

ALTERAÇOES FISIOLÓGICAS EM RAÍZES DE MANDIOCA MINIMAMENTE PROCESSADAS

Celina Maria Henrique

Dr., PqC do Polo Regional Centro Sul/APTA celina@apta.sp.gov.br

Patricia Prati

Dr., PqC do Polo Regional Centro Sul/APTA pprati@apta.sp.gov.br

Silene Bruder Silveira Sarmento

Dr., Prof. do Departamento de Agroindústria, Alimentos e Nutrição da ESALQ/USP sbssarme@carpa.ciagri.usp.br

Resumo

A conservação pós-colheita das raízes de mandioca tem sido preocupação dos produtores e das indústrias devido à alta perecibilidade das raízes. Os fenômenos apontados como responsáveis pela deterioração são o fisiológico, devido ao escurecimento vascular dos tecidos e o microbiológico, que causa a decomposição das raízes. Dessa forma, o objetivo dessa pesquisa foi avaliar uma tecnologia para evitar o escurecimento enzimático e proporcionar aumento da vida de útil dessas raízes. Raízes de mandioca da variedade IAC 576-70 receberam solução de hipoclorito de sódio e outra ácido cítrico a 5% para evitar escurecimento e tratamentos com: cura, recobrimento com filmes de amido de mandioca (3 e 5%), com ou sem glicerol, e embalagem à vácuo ou não. As amostras foram armazenadas em temperatura ambiente (T. máx. 30 °C, mín.13 °C e UR 50- 60%). Foram avaliadas quanto a acidez total titulável pH e cor (L, a, b). Os resultados foram analisados por análise de variância e diferença de médias (Tukey) em nível de 5%. Durante o período de armazenamento foi observada deterioração fisiológica com escurecimento vascular visível. O aparecimento de manchas de cor rosa e enegrecidas foi constatado em todos os

tratamentos, porém nos tratamentos sem vácuo apareceram após 2 dias de armazenamento

e nos tratamentos à vácuo após 8 dias. Aparentemente o tratamento com ácido cítrico a 5%

não controlou escurecimento de forma significativa O processo de respiração nas

embalagens sem vácuo proporcionou acumulo de água livre e nas embaladas a vácuo

ocorreu perda do vácuo, onde ocorreu estufamento das embalagens.

Palavras-chaves: vida útil, amido, películas comestíveis, escurecimento enzimático

Introdução

As raízes de mandiocas in natura são cada vez menos freqüentes em mercados e

supermercados de cidades grandes. O aspecto visual das mesmas não atrai os

consumidores devido a terra aderida, variação de tamanho e rápida deterioração. Além

disto, precisam ser descascadas em casa e têm menores garantias de qualidade, pois em

geral não tem o rótulo do produtor.

Os danos fisiológicos das raízes de mandioca, considerados primários, manifestam-se

durante as primeiras 24 a 72 horas após a colheita, mediante escurecimento das mesmas,

enquanto os danos microbiológicos, considerados secundários, ocorrem do quinto ao sétimo

dia após a colheita (Wheatley, 1987).

O escurecimento enzimático das raízes é um fator importante a ser considerado no

processamento da mandioca e é desencadeado pela exposição do tecido do parênquima de

armazenamento ao oxigênio. Este escurecimento pode ser evitado ou minimizado com a

aplicação de tratamentos antioxidantes como ácidos orgânicos e/ou com o branqueamento.

Outra alternativa para minimizar as perdas por deterioração pós-colheita tem sido o

emprego de técnicas de conservação in natura de raízes frescas (Kato, 1988; Sargent et al.,

1995). Essas técnicas, entretanto, têm sido pouco utilizadas.

O objetivo da pesquisa foi avaliar as técnicas de cura, uso de películas comestíveis e uso de

vácuo visando reduzir ou inibir o escurecimento enzimático das raízes de mandioca,

proporcionando aumento da vida útil dessas raízes minimamente processadas.

Material e métodos

Raízes de mandioca da variedade IAC 576-70 foram submetidas avaliadas quanto à: acidez total titulável (% ácido cítrico) segundo o método N° 942.15, da AOAC (1997); pH segundo o método N° 981.12, AOAC (1997) e cor utilizando-se o Colorímetro Minolta, modelo Chroma Meter CR-200b, no sistema L, a e b (Bible & Singha, 1993). O índice de escurecimento (IE) foi calculado de acordo com Palou et al. (1999).

As raízes foram descascadas e cortadas em toletes (5 -7cm), após lavagem em água corrente, os toletes foram imersos em duas soluções por 15 min: hipoclorito de sódio 200 mg/kg de Cl₂ a pH 7e ácido cítrico a 5%. Os seguintes tratamentos pós-colheita foram avaliados: testemunha com (A) e sem (B) embalagem a vácuo, cura com (C) e sem (D) embalagem a vácuo, recobrimento com filmes de amido de mandioca a 3 % com (E) e sem (F) embalagem a vácuo e a 5%, com (G) e sem (H) embalagem a vácuo, recobrimento com filmes de amido de mandioca a 3 e 5% adicionado de glicerol (30% em relação à massa de amido) com e sem embalagem a vácuo (I, J, L e M). As amostras foram armazenadas em temperatura ambiente (T. máx. 30°C, mín.13°C e UR 50- 60%). Os resultados foram analisados por análise de variância utilizando-se o software SAS (1993) e os testes de médias por Tukey, em nível de 5% de significância.

Resultados e discussão

A Tabela 1 mostra os parâmetros de cor das raízes de mandioca processadas durante o armazenamento sob diversos tratamentos que o croma a* apresentou redução de valores com o tempo de armazenamento, apresentando valores negativos, indicativos do componente verde, enquanto que o croma b* apresentou valores positivos, indicativos do componente amarelo, o que se justifica por ser esta variedade é de polpa amarela.

Tabela 1: Valores médios de luminosidade, cromas a* e b* e Índice de Escurecimento (IE) das raízes de mandioca processadas e armazenadas sob condições ambientes.

Tempo (dias)		Tratamentos											
		Α	В	C	D	E	F	G	Н	I	J	L	M
a*	0	-1,3	-1,3	-1,4	-1,4	-1,3	-1,3	-1,3	-1,3	-1,2	-1,2	-1,4	-1,4
	4	-0,6	-1,4	-0,4	-0,4	0,5	-0,8	-0,3	-1,9	0,3	-0,8	-0,5	-1,3
	8	-0,8	-1,5	-0,4	-1,5	-	-0,2	-	-1,7	-	-1,0	_	-1,4
	12	-	-1,5	-	-1,2	-	-2,0	_	-	-	-0,3	¥	-1,5
b*	0	22,7	22,7	19,8	19,8	20,5	20,5	21,0	21,0	19,0	19,0	20,5	20,5
	4	23,8	23,8	23,7	23,7	31,0	25,4	27,7	22,1	26,2	25,8	29,1	23,7
	8	29,2	20,2	23,2	24,7	-	30,9	5.7×	22,3		25,9	-	26,3
	12	-	22,9	-	25,1	-	20,5	-	· ·	-	27,0	-	27,4
L	0	82,6	82,6	85,7	85,7	81,0	81,0	80,7	80,7	81,4	81,4	80,6	80,6
	4	79,4 85,1 75,4	81,4	73,4	82,2	79,1	87,4	67,5	81,6	80,5	84,9		
	8	83,9	89,2	73,5	85,7	-	80,0	-	87,4	-	84,2	=	86,9
	12	-	87,9	-	84,1	-	87,9	-	-	-	79,8	-	88,2
IE	0	29,8	29,5	24,1	24,1	26,9	26,9	27,8	27,8	24,5	24,5	27,0	27,0
	4	33,8	30,5	36,0	32,9	53,3	34,9	41,1	26,5	47,7	36,0	42,4	30,4
	8	40,4	23,6	37,0	31,5		46,8		26,9		34,5	7	33,5
	12	*	27,8	18	33,1	-	23,9	-	-	-	39,5	*	34,6

Obs: os traços são amostras descartadas.

A luminosidade representa a terceira dimensão da cor, sendo a qualidade pela qual se distingue uma cor clara de outra cor escura (Ferreira, 1991). Os valores de luminosidade (L) e o índice de escurecimento (IE) mostram maior intensificação da cor escura nos tratamentos testemunha (A e B), cura com vácuo (D), filme 3% com vácuo (F), filme 5% sem vácuo (H) e filme 5% com glicerol com vácuo (M).

Tabela 2: Valores de pH e de acidez (% ácido cítrico) das raízes de mandioca cortadas em toletes durante o armazenamento sob condições ambientes.

Tratamentos	0 dias	4 dias	8 dias	12 dias					
		Pl	h						
Α	6,75 Bab	7,04 Aa	6,65 Cb	-					
В	6,75 Aab	6,92 Aa	6,06 Bc	5,94 Bb					
C	6,70 ABab	6,98 Aa	6,84 Ba	- 6,06 Ba - 4,58 De - -					
D	6,70 Aab	6,82 Aa	5,05 Cf						
E	6,66 BBC	6,89 Aa							
F	6,66 BBC	6,82 Aa	5,63 Cd						
G	6,58 Bc	6,89 Aa	₹ 5 8						
H	6,58 Bc	7,01 Aa	5,08 Cef						
I	6,75 Aab	6,57 Aa	421	700					
J	6,75 Bab	6,91 Aa	5,63 Cd	4,87 Dd					
L	6,77 Aa	6,64 Aa	_	-					
M	6,77 Aa	6,35 Aba	5,18 BCe	4,96 Cc					
	Acidez								
Α	0,12 B a	0,35 A ab	0,13 B c	32					
В	0,12 C a	0,26 A b	0,15 B c	0,75 B ab					
С	0,11 B a	0,31 A ab	0,08 B d	=					
D	0,11 D a	0,40 A a	0,29 B a	0,73 C ab					
E	0,13 B a	0,35 A ab	=	8					
F	0,13 D a	0,32 B ab	0,20 C b	0,85 A a					
G	0,13 B a	0,43 A a	**	=					
Н	0,13 B a	0,27 A b	0,26 A a	ā					
I	0,11 Ba	0,37 A ab	500 Till	泰					
J	0,11 B a	0,32 A ab	0,14 B c	0,67 A b					
L	0,12 B a	0,36 A ab							
M	0,12 B a	0,34 A ab	0,29 Aba	0,77 A ab					

Médias seguidas de mesma letra minúscula na coluna e maiúsculas na linha não diferem entre si, pelo Teste de Tukey em nível de 5% de probabilidade. Obs: os traços são amostras descartadas. As raízes embaladas à vácuo foram as que apresentaram valores de pH mais baixos dentre todos os tratamentos avaliados, sendo que os tratamentos à vácuo recobertos por filmes de amido a 3% (F) e filmes de amido a 3% + glicerol (J) foram os que tiveram menores valores de pH, com diferença significativa aos demais tratamentos (Tabela 2). A presença da cobertura de amido provavelmente promova um ambiente anaeróbio, promovendo o processo fermentativo das raízes.

Os tratamentos à vácuo apresentaram maiores valores de acidez, também com diferença significativa entre os tratamentos e ao longo do tempo avaliado (Tabela 2). O aumento de acidez nos tratamentos à vácuo, possível processo fermentativo das raízes que, segundo Bezerra et al. (2002), é ocasionado por bactérias anaeróbicas facultativas, capazes de consumir oxigênio e produzir ácidos orgânicos.

Conclusão

Houve deterioração fisiológica das raízes de mandioca cortadas em toletes e armazenadas sob condições ambientes, manifestada por alterações de cor e escurecimento vascular. Nessas condições, é possível armazenar por 8 dias sob condições ambiente, com embalagens a vácuo, sendo que os melhores resultados foram encontrados nos tratamentos cura, filme 3% e filme 5% com glicerol e os piores resultados foram todos os tratamentos sem vácuo. Aparentemente o tratamento com ácido cítrico a 5% não apresentou controle do escurecimento significativo, mas um estudo detalhado da aplicação do ácido cítrico em diversas concentrações e combinações com outros antioxidantes deve ser realizado.

Referências

A.O.A.C INTERNACIONAL. **Official Methods of Analysis.** 16^a ed., 3^a rev. Gaitherburg: Published by AOAC International, v.2, 1997.

BEZERRA, U.S.; PEREIRA, R.G.F.A.; CARVALHO, V.D. de; VILELA, E.R. Raízes de mandioca minimamente processadas: Efeito do branqueamento na qualidade e na conservação. **Ciência e Agrotecnologia**, Lavras, v.26, n.3, p. 564-575, 2002.

BIBLE, B.B.; SINGHA, S. Canopy position infleneces CIELAB coordinates of peache color.**HortScience**, v. 28, n. 10, p. 992-993, 1993.

FERREIRA, V.L.P. **Colorímetria em alimentos**. Instituto de Tecnologia de Alimentos. Campinas, 1991, 43p.

KATO, M. do S. A. Armazenamento de raízes frescas de mandioca (Manihot esculenta, Crantz) após a colheita. Belém: Embrapa-Uepae de Belém, 1988. 30 p.

PALOU, E. et al. Polyphenoloxidase activity anb coloro f blanched and high hydrostatic pressure treated banana puree. **Journal of Food Science**, v. 64, n.1, p. 42-45, 1999.

SARGENT, S. A.; CÔRREA, T. B. S.; SOARES, A. G. Application of postharvest coatings to fresh cassava roots (Manihot esculenta, Crantz) for reduction of vascular streaking. In: HARVEST AND POSTHARVEST TECHNOLOGIES FOR FRESH FRUITS AND VEGETABLES INTERNATIONAL CONFERENCE, 1995, Guanajuato. **Proceedings...** Guanajuato: American Society of Agricultural Engineers, 1995. p. 331-338.

WHEATLEY, C. C. Conservación de raíces de yuca en bolsas de polietileno. Cali: Centro Internacional de Agricultura Tropical, 1987. 33 p. (Serie 045c-07-06).

^[1] Trabalho apresentado no II Simpósio em Ciência e Tecnologia de Alimentos, Aracaju, 18 a 21 de abril de 2010 e publicado nos Anais do evento.

^[2] Agradecimentos à FAPESP pelo financiamento.